PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes.
نویسندگان
چکیده
The P instability factor or PIF superfamily of DNA transposons constitutes an important group of transposable elements (TEs) in plants, but it is still poorly characterized in metazoans. Taking advantage of the availability of draft genome sequences for twelve Drosophila species, we discovered 4 different lineages of Drosophila PIF-like transposons, named DPLT1-4. These lineages have experienced a complex evolutionary history during the Drosophila radiation, involving differential amplification and retention among species and probable events of horizontal transmission. Like previously described plant and animal PIF transposons, full-length DPLTs encode a putative transposase as well as a second predicted protein containing a Myb/SANT domain. In DPLTs, this domain is most closely related to the MADF DNA-binding domain found in several Drosophila transcription factors. In addition, we identified 7 distinct genes distributed across the Drosophila genus that encode proteins related to PIF transposases, but lack the hallmarks of transposons. Instead, these sequences show features of functional genes, such as an intact coding region evolving under purifying selection, the presence of orthologs in at least 2 Drosophila species, and the conservation of intron/exon structure across orthologs. We also provide evidence that most of these genes are transcribed and that some are developmentally regulated. Together the data indicate that these genes derived from PIF-transposons that have been "domesticated" to serve cellular functions. In one instance the recruitment of the transposase gene was accompanied by the co-recruitment of the adjacent second PIF gene, which raises the hypothesis that both proteins now function in the same pathway. The second PIF gene has retained the capacity to encode a protein with an intact MADF domain, suggesting that it may function as a transcription factor. We conclude that PIF transposons are common in the Drosophila lineage and have been a recurrent source of new genes during Drosophila evolution.
منابع مشابه
MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms.
While transposons have traditionally been viewed as genomic parasites or "junk DNA," the discovery of transposon-derived host genes has fueled an ongoing debate over the evolutionary role of transposons. In particular, while mobility-related open reading frames have been known to acquire host functions, the contribution of these types of events to the evolution of genes is not well understood. ...
متن کاملTame affairs: domesticated transposase and domestic pigs.
Our opinion on transposable elements has evolved considerably during the past decade. First considered as genome parasites and selfish elements, mobile sequences have been rehabilitated by the demonstration of their crucial role in gene and genome evolution. Notably, transposable elements have repeatedly contributed regulatory and coding sequences to host genes during evolution. A fascinating f...
متن کاملBs1, a new chimeric gene formed by retrotransposon-mediated exon shuffling in maize.
Transposons are major components of all eukaryotic genomes. Although traditionally regarded as causes of detrimental mutations, recent evidence suggests that transposons may play a role in host gene diversification and evolution. For example, host gene transduction by retroelements has been suggested to be both common and to have the potential to create new chimeric genes by the shuffling of ex...
متن کاملSpy: A New Group of Eukaryotic DNA Transposons without Target Site Duplications
Class 2 or DNA transposons populate the genomes of most eukaryotes and like other mobile genetic elements have a profound impact on genome evolution. Most DNA transposons belong to the cut-and-paste types, which are relatively simple elements characterized by terminal-inverted repeats (TIRs) flanking a single gene encoding a transposase. All eukaryotic cut-and-paste transposons so far described...
متن کاملTransposons and their application in plant pathology
Prokaryote, viruses, and eukaryotes chromosomes contain fragments of DNA can move and migrate to other parts of the chromosome calling as Transposition and play an important role in new combinations of gene production. DNA fragments carrier the genes or transposons are the transposable elements that may called gene mutant also. Transposons can move to another position of the same chromosome or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2007